Unraveling molecular complexity of phosphorylated human cardiac troponin I by top down electron capture dissociation/electron transfer dissociation mass spectrometry.
نویسندگان
چکیده
Cardiac troponin I (cTnI), the inhibitory subunit of the thin filament troponin-tropomyosin regulatory complex, is required for heart muscle relaxation during the cardiac cycle. Expressed only in cardiac muscle, cTnI is widely used in the clinic as a serum biomarker of cardiac injury. In vivo function of cTnI is influenced by phosphorylation and proteolysis; therefore analysis of post-translational modifications of the intact protein should greatly facilitate the understanding of cardiac regulatory mechanisms and may improve cTnI as a disease biomarker. cTnI (24 kDa, pI approximately 9.5) contains twelve serine, eight threonine, and three tyrosine residues, which presents a challenge for unequivocal identification of phosphorylation sites and quantification of positional isomers. In this study, we used top down electron capture dissociation and electron transfer dissociation MS to unravel the molecular complexity of cTnI purified from human heart tissue. High resolution MS spectra of human cTnI revealed a high degree of heterogeneity, corresponding to phosphorylation, acetylation, oxidation, and C-terminal proteolysis. Thirty-six molecular ions of cTnI were detected in a single ESI/FTMS spectrum despite running as a single sharp band on SDS-PAGE. Electron capture dissociation of monophosphorylated cTnI localized two major basal phosphorylation sites: a well known site at Ser(22) and a novel site at Ser(76)/Thr(77), each with partial occupancy (Ser(22): 53%; Ser(76)/Thr(77): 36%). Top down MS(3) analysis of diphosphorylated cTnI revealed occupancy of Ser(23) only in diphosphorylated species consistent with sequential (or ordered) phosphorylation/dephosphorylation of the Ser(22/23) pair. Top down MS of cTnI provides unique opportunities for unraveling its molecular complexity and for quantification of phosphorylated positional isomers thus allowing establishment of the relevance of such modifications to physiological functions and disease status.
منابع مشابه
The role of electron capture dissociation in biomolecular analysis.
The introduction of electron capture dissociation (ECD) to electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) constitutes a significant advance in the structural analysis of biomolecules. The fundamental features and benefits of ECD are discussed in this review. ECD is currently unique to FT-ICR MS and the fundamentals of that technique are outlined. The ...
متن کاملElectron detachment dissociation and negative ion infrared multiphoton dissociation of electrosprayed intact proteins.
In top-down proteomics, intact gaseous proteins are fragmented in a mass spectrometer by, e.g., electron capture dissociation (ECD) to obtain structural information. By far, most top-down approaches involve dissociation of protein cations. However, in electrospray ionization of phosphoproteins, the high acidity of phosphate may contribute to the formation of intramolecular hydrogen bonds or sal...
متن کاملComprehensive analysis of protein modifications by top-down mass spectrometry.
Mass spectrometry (MS)-based proteomics is playing an increasingly important role in cardiovascular research. Proteomics includes identification and quantification of proteins and the characterization of protein modifications, such as posttranslational modifications and sequence variants. The conventional bottom-up approach, involving proteolytic digestion of proteins into small peptides before...
متن کاملAnalysis of intact monoclonal antibody IgG1 by electron transfer dissociation Orbitrap FTMS.
The primary structural information of proteins employed as biotherapeutics is essential if one wishes to understand their structure-function relationship, as well as in the rational design of new therapeutics and for quality control. Given both the large size (around 150 kDa) and the structural complexity of intact immunoglobulin G (IgG), which includes a variable number of disulfide bridges, i...
متن کاملAugmented phosphorylation of cardiac troponin I in hypertensive heart failure.
An altered cardiac myofilament response to activating Ca(2+) is a hallmark of human heart failure. Phosphorylation of cardiac troponin I (cTnI) is critical in modulating contractility and Ca(2+) sensitivity of cardiac muscle. cTnI can be phosphorylated by protein kinase A (PKA) at Ser(22/23) and protein kinase C (PKC) at Ser(22/23), Ser(42/44), and Thr(143). Whereas the functional significance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular & cellular proteomics : MCP
دوره 7 10 شماره
صفحات -
تاریخ انتشار 2008